Roc_auc#
- class mvpy.metrics.Roc_auc(name: str = 'roc_auc', request: str | ~typing.Tuple[str] = ('y', 'decision_function'), reduce: int | ~typing.Tuple[int] = (0, ), f: ~typing.Callable = <function roc_auc>)[source]#
Implements
mvpy.math.roc_auc()as aMetric.Warning
This class extends
Metric. If you would like to apply this metric, please use the instance exposed undermvpy.metrics.roc_auc.For more information on this, please consult the documentation of
Metricandscore().- Parameters:
- namestr, default=’roc_auc’
The name of this metric.
- requeststr | tuple[str], default=(‘y’, ‘decision_function’)
The values to request for scoring.
- reduceint | tuple[int], default= (0,)
The dimension(s) to reduce over.
- fCallable, default=mvpy.math.roc_auc
The function to call.
Examples
>>> import torch >>> from mvpy.dataset import make_meeg_categorical >>> from mvpy.estimators import RidgeClassifier >>> from mvpy.crossvalidation import cross_val_score >>> from mvpy.metric import roc_auc >>> X, y = make_meeg_categorical() >>> clf = RidgeClassifier() >>> cross_val_score(clf, X, y, metric = roc_auc)
- __call__(y: ndarray | Tensor, df: ndarray | Tensor) ndarray | Tensor[source]#
Compute ROC-AUC scores.
This overwrites the default behaviour specified in
Metricto make sure ROC-AUC scores are computed appropriately per feature, even when there is an additional time dimension.- Parameters:
- ynp.ndarray | torch.Tensor
The true labels of shape
(n_features, [n_timepoints, ]n_samples).- dfnp.ndarray | torch.Tensor
The decision functions of shape
(n_classes, [n_timepoints, ]n_samples).
- Returns:
- roc_aucnp.ndarray | torch.Tensor
The score of shape
(n_features[, n_timepoints]).