cosine#
- mvpy.math.cosine(x: ndarray | Tensor, y: ndarray | Tensor, *args: Any) ndarray | Tensor[source]#
Compute cosine similarities between x and y. Note that similarities are always computed over the final dimension.
- Parameters:
- xUnion[np.ndarray, torch.Tensor]
Vector/Matrix/Tensor
- yUnion[np.ndarray, torch.Tensor]
Vector/Matrix/Tensor
- Returns:
- Union[np.ndarray, torch.Tensor]
Similarities
Notes
Cosine similarity is defined as:
\[\text{cosine}(x, y) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}\]Examples
>>> import torch >>> from mvpy.math import cosine >>> x = torch.tesor([1, 0]) >>> y = torch.tensor([-1, 0]) >>> cosine(x, y) tensor([-1.])