rank#
- mvpy.math.rank(x: ndarray | Tensor) ndarray | Tensor[source]#
Rank data in x along its final feature dimension. Ties are computed as averages.
- Parameters:
- xUnion[np.ndarray, torch.Tensor]
Unranked data ([samples x …] x features).
- Returns:
- rUnion[np.ndarray, torch.Tensor]
Ranked data ([samples x …] x features).
Examples
>>> import torch >>> from mvpy.math import rank >>> x = torch.tensor([2, 0.5, 1, 1]) >>> rank(x) tensor([4.0000, 1.0000, 2.5000, 2.5000])