cosine_d#

mvpy.math.cosine_d(x: ndarray | Tensor, y: ndarray | Tensor, *args: Any) ndarray | Tensor[source]#

Compute cosine distances between x and y. Note that distances are always computed over the final dimension.

Parameters:
xUnion[np.ndarray, torch.Tensor]

Vector/Matrix/Tensor

yUnion[np.ndarray, torch.Tensor]

Vector/Matrix/Tensor

Returns:
Union[np.ndarray, torch.Tensor]

Distances

Notes

Cosine distances are computed as \(1 - \text{cosine}(x, y)\).

Examples

>>> import torch
>>> from mvpy.math import cosine_d
>>> x = torch.tesor([1, 0])
>>> y = torch.tensor([-1, 0])
>>> cosine_d(x, y)
tensor([2.])