r2#
- mvpy.math.r2(y: ndarray | Tensor, y_h: ndarray | Tensor) ndarray | Tensor[source]#
Rank data in x along its final feature dimension. Ties are computed as averages.
- Parameters:
- yUnion[np.ndarray, torch.Tensor]
True outcomes of shape
([n_samples, ...,] n_features).- y_hUnion[np.ndarray, torch.Tensor]
Predicted outcomes of shape
([n_samples, ...,] n_features).
- Returns:
- rUnion[np.ndarray, torch.Tensor]
R2 scores of shape
([n_samples, ...]).
Examples
>>> import torch >>> from mvpy.math import rank >>> y = torch.tensor([1.0, 2.0, 3.0]) >>> y_h = torch.tensor([1.0, 2.0, 3.0]) >>> r2(x) tensor([1.0])