pearsonr#
- mvpy.math.pearsonr(x: ndarray | Tensor, y: ndarray | Tensor, *args: Any) ndarray | Tensor[source]#
Computes pearson correlations between x and y. Note that correlations are always computed over the final dimension.
- Parameters:
- xUnion[np.ndarray, torch.Tensor]
Matrix ([samples …] x features)
- yUnion[np.ndarray, torch.Tensor]
Matrix ([samples …] x features)
- Returns:
- Union[np.ndarray, torch.Tensor]
Vector or matrix of pearson correlations
Notes
Pearson correlations are defined as:
\[r = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sqrt{\sum{(x_i - \bar{x})^2} \sum{(y_i - \bar{y})^2}}}\]where \(x_i\) and \(y_i\) are the \(i\)-th elements of \(x\) and \(y\), respectively.
Examples
>>> import torch >>> from mvpy.math import pearsonr >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([4, 5, 6]) >>> pearsonr(x, y) tensor(1., dtype=torch.float64)