pearsonr_d#
- mvpy.math.pearsonr_d(x: ndarray | Tensor, y: ndarray | Tensor, *args: Any) ndarray | Tensor[source]#
Computes Pearson distance between x and y. Note that distances are always computed over the final dimension in your inputs.
- Parameters:
- xUnion[np.ndarray, torch.Tensor]
Vector/Matrix/Tensor
- yUnion[np.ndarray, torch.Tensor]
Vector/Matrix/Tensor
- Returns:
- Union[np.ndarray, torch.Tensor]
Distances
See also
Notes
Pearson distance is defined as \(1 - \text{pearsonr}(x, y)\).
Examples
>>> import torch >>> from mvpy.math import pearsonr_d >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([-1, -2, -3]) >>> pearsonr_d(x, y) tensor(2.0, dtype=torch.float64)